-
收藏
-
加书架
-
引用
简介
这是一本基于公理研究学习算法的书。共 17章,由两部分组成。第一部分是机器学习公理以及部分理论演绎,包括第1、2、6、8 章,论述学习公理以及相应的聚类、分类理论。第二部分关注如何从公理推出经典学习算法,包括单类、多类和多源问题。第 3~5 章为单类问题,分别论述密度估计、回归和单类数据降维。第 7、9~16 章为多类问题,包括聚类、神经网络、 K近邻、支持向量机、Logistic回归、贝叶斯分类、决策树、多类降维与升维等经典算法。最后第 17章研究了多源数据学习问题。本书可以作为高等院校计算机、自动化、数学、统计学、人工智能及相关专业的研究生教材,也可以供机器学习的爱好者参考。
编辑推荐
机器学习是本次人工智能热潮的核心技术。引起轰动的应用如AlphaGo等,都可以看到机器学习的身影。目前,机器学习理论纷繁复杂,算法形式花样百出。人们一直在疑惑,机器学习,特别是其中的深度学习的本质到底是什么? 作者积二十年研究之力,将各种学习理论融于一体,提出了五条学习公理,据此推导出了常见的学习算法,包括深度学习。如果想要知道机器学习的本质,快速理清各种学习算法之间的关系,本书是一条不容错过的终南捷径。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2017-07-01
- 更新: 2023-06-07
- 书号:9787302471363
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术