《数据分析与数据挖掘》主要介绍数据挖掘和数据分析的基本概念和方法,包括数据的基本属性和概念、数据预处理技术、数据立方体和OLAP技术、频繁模式挖掘、回归分析、分类、聚类、离群点分析。书中涉及到的模型和算法均给予了相应的实例。
数据分析与数据挖掘是一门跨学科的计算机科学分支,是人工智能、机器学习、概率论、统计学和数据库知识的交叉学科。数据挖掘的目标是从一个或多个数据集中通过数据处理,结合一定的算法模型*终挖掘出有价值的信息。随着科技的发展,数据量呈爆炸式增长,数据挖掘在工业界和学术界都得到了越来越多的重视。国际知名的互联网公司和科研单位都在大力发展数据科学,在我国,数据科学的发展受到了极大的关注,通过数据分析与数据挖掘帮助决策,进而推动经济发展。本书主要介绍数据分析与数据挖掘的基本概念和方法,包括数据的基本属性和概念、数据预处理技术、数据仓库和OLAP技术、回归分析、频繁模式挖掘、分类、聚类、离群点分析。每一部分先介绍基本概念、理论基础,再给出应用实例,便于读者更好的理解和应用算法,*后给出习题。本书所讲述的内容均为数据分析与数据挖掘过程中常用方法和模型,目的是让爱好数据科学的计算机专业、统计学专业以及相关专业的学生熟悉数据挖掘的过程,掌握数据分析与数据挖掘过程中常用的算法模型及数据处理方式。本书知识点的介绍通过基础理论及概念介绍、应用例题、习题三部分进行,部分章节涉及算法应用实例。通过对数据分析与数据挖掘知识点的基础理论讲解,对数据分析与数据挖掘有整体的认识及了解;通过应用例题,能够对算法的过程有深刻的理解;通过习题,能够巩固对相应知识点掌握。本书适用于数据分析与数据挖掘领域的初学者,可以作为相关专业本科及研究生教材。书中算法由浅入深、由原理到应用,有利于初学者的学习和理解。本书也可作为数据分析与数据挖掘相关专业人士的参考用书。
- 版权: 清华大学出版社
- 出版: 2018-04-01
- 更新: 2023-07-18
- 书号:9787302493662
- 中图:TP274
- 学科:工学控制科学与工程工学计算机科学与技术
获奖信息
相关专题
相关图书
-
数据挖掘:商业数据分析技术与实践
[美]盖丽特·徐茉莉(Galit Shmueli) 彼得·布鲁斯(Peter C. Bruce)米娅·斯蒂芬斯(Mia L. Stephens)尼廷·帕特尔(Nitin R. Patel) 著 ,阮敬 严雪林 周暐 译
¥118.00