简介
本书以通过FPGA实现简易神经网络的推理流程为主线,主要包含以下内容: 在TensorFlow学习框架下实现神经网络训练,保存训练好的权值和偏置;将TensorFlow框架下训练的神经网络使用OpenCL语言实现,并编译生成可执行文件和FPGA编程文件;将输入数据、权值、偏置等数据通过以太网口传输到FPGA开发板;在FPGA开发板上运行神经网络。 本书的重点在于神经网络算法的OpenCL描述方法及FPGA实现流程。简易神经网络算法不仅可以让读者明白神经网络的工作原理及基本框架,还可以使用较少的OpenCL代码描述,易于分析神经网络算法与代码的对应关系,实现OpenCL语言的学习。 本书以Ubuntu操作系统为运行环境,以性价比高的FPGA开发板DE10_nano为实现平台,该开发板尺寸较小,易于携带,方便管理,价格较低,适合批量购买以开展相关教学实验。 本书面向电子信息、计算机、自动化等相关专业的本科生及研究生或FPGA开发人员。
编辑推荐
FPGA在现代电子系统设计中扮演越来越重要的角色,特别是近几年飞速发展的人工智能、机器学习、硬件加速等领域。与GPU实现方式相比,FPGA具有较好的能效比,可以实现低功耗和低延时,具有广阔的应用前景。OpenCL作为一种业界异构计算标准,对FPGA的应用起到了重要的推动作用,是未来大型FPGA系统设计的重要方法。为了便于开展面向FPGA平台的OpenCL教学,本教材结合人工智能领域中的神经网络为实现目标,通过学习TensorFlow框架下的神经网络训练、神经网络算法的OpenCL描述、神经网络的FPGA实现等内容,掌握FPGA实现神经网络算法推理的整个流程,为今后从事人工智能、算法加速、FPGA开发等相关领域工作奠定基础。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2021-12-03
- 更新: 2023-06-21
- 书号:9787302593980
- 中图:TP18-43;TP332.1-43
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术