简介
本书依据作者多年从事模式识别教学和研究的体会,并参考相关文献编写而成,概括地介绍了模式识 别理论和技术的基本概念、原理、方法和实现。 全书共分为11章,每章阐述模式识别中的一个知识点,内容包括贝叶斯决策、概率密度函数的估计、 线性判别分析、非线性判别分析、组合分类器、无监督模式识别、特征选择、特征提取、半监督学习以及人工 神经网络。除了经典算法以外,本书增加了部分较新的理论和算法,读者可以选择性地学习。本书还配以 电子课件、MATLAB仿真程序和实验指导书,便于教和学。 本书可以作为高等学校人工智能、计算机、信息、自动化、遥感、控制等专业本科生或研究生的教材或 参考书,也可以作为从事相关研究与应用人员的参考书。
编辑推荐
教学资源: 教学课件 程序代码 实验指导 教学建议 本书特色: 本书是在总结“模式识别”课程教学经验的基础上,结合本科生教学特点编写而成的。全书理论联系实际,层次分明,语言描述清晰,力求让读者清晰掌握模式识别的基本概念、基本原理和应用方法,能够初步运用所学知识解决实际问题,为模式识别及相关领域的研究奠定基础。 易学易教:各种算法叙述思路清晰,编写示例,设计实例,有助于初学者对算法的理解。配以教学建议、教学课件、程序代码、实验指导等资源,便于开展教学。 注重实践:在系统阐述理论算法的同时,对每种算法设计基于MATLAB的仿真程序,在各章习题中安排编程题目,加强实践,加深读者对各种算法的理解和掌握。 内容丰富:涵盖模式识别的十个知识模块,均包含理论和实践部分;除经典算法外,增加了较新的理论和算法,可以选择性地学习;阐述由浅入深,符合大学生的学习规律。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-04-01
- 更新: 2023-06-19
- 书号:9787302591856
- 中图:O235-39
- 学科:理学数学