-
收藏
-
加书架
-
引用
简介
使用机器学习进行数据可视化分析是近年来研究的热点内容之一。本书使用最新的Python作为机器学习的基本语言和工具,从搭建环境开始,逐步深入到理论、代码、应用实践中去,从而使初学者能够独立使用机器学习完成数据分析。本书配套示例代码、PPT课件和答疑服务。 本书分为10章,内容包括:机器学习与Python开发环境、用于数据处理及可视化展示的Python类库、NBA赛季数据可视化分析、聚类算法与可视化实战、线性回归与可视化实战、逻辑回归与可视化实战、决策树算法与可视化实战、基于深度学习的酒店评论情感分类实战、基于深度学习的手写体图像识别实战、TensorFlow Datasets和TensorBoard训练可视化。 本书内容详尽、示例丰富,是机器学习初学者的入门书和必备的参考书,也可作为高等院校计算机及大数据相关专业的教材使用。
编辑推荐
本书通过机器学习与可视化组件相结合的方式,系统介绍机器学习与可视化分析相关技术,并通过实战项目讲解机器学习中最常用的数据挖掘相关知识,例如聚类、线性回归、逻辑回归以及决策树算法。特别是为了满足部分读者的需求,本书还详细介绍了深度学习的两个基础算法——文本分类与图像识别算法。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-09-02
- 更新: 2023-11-24
- 书号:9787302616177
- 中图:TP312PY;TP181
- 学科:工学控制科学与工程工学计算机科学与技术工学软件工程