大数据技术原理与实践

作者: 李少波,杨静

出版社: 华中科技大学出版社

出版日期: 2020-10-01

  • 优惠券
  • ¥3
    ¥10
    ¥30
    ¥70
  • 领券
电子书 ¥19.89 定价:39.8
  • 收藏

  • 加书架

  • 引用

简介

本书将围绕大数据技术的基本原理与实践,介绍了大数据获取、存储、分析、数据挖掘和机器学习。内容涵盖以下主题:Hadoop、Mapreduce、关联规则、大规模监督机器学习、数据流、集群、NoSQL系统(Pig、Hive),以及包括推荐系统、Web和安全性的应用程序。 第1章重点阐述了大数据驱动的商业模式、技术生态体系,大数据的类型、特点、获取技术。第2章概要介绍了大数据的软硬件架构,包括大数据技术基础与软硬件设施、大数据存储与管理技术、大数据的分布式处理技术平台等,包括MapReduce编程框架原理、Spark结构与原理、基于Storm的大规模数据流的分布式处理技术等。第3章介绍了Python编程基础,包括基本数据类型、基本控制流程、Numpy、Scipy、Pandas等。第4章介绍了大数据分析技术,包括基于MapReduce基础编程、文本大数据分析与处理技术、大数据关联分析、相似项的发现、基于大数据的推荐系统、基于大数据的图与网络分析、大数据聚类分析、时空大数据分析、非结构化大数据分析与处理、基于Storm的流数据分析技术等。第5章介绍了基于SparkMLlib/Mahout的大数据机器学习,包括机器学习基础、典型机器学习问题、机器学习评价方法、并行机器学习算法,并进行了利用MLlib解决大数据并行分类问题、利用Mahout解决大数据推荐优化问题实践。第6章介绍了基于大数据的深度学习技术,包括深度学习基本原理、深度学习典型应用、Keras 基础入门及应用案例。第7章介绍了材料大数据材料热导率预测、旅游大数据分析、交通大数据分析、工业大数据分析、产品创新大数据分析等带代码、数据的案例。 本书内容深入浅出,具有很强的理论与实践指导作用,可作为数据科学与技术、人工智能、计算机科学、制造科学、机械工程等学科相关专业的本科生、研究生的教材或课程教学参考书,也是对工程技术人员、科研人员而言非常实用的工具书。

编辑推荐

本书内容深入浅出,具有很强的理论与实践指导作用,可作为数据科学与技术、人工智能、计算机科学、制造科学、机械工程等学科相关专业的本科生、研究生的教材或课程教学参考书,也是对工程技术人员、科研人员而言非常实用的工具书。

更多出版物信息
  • 版权: 华中科技大学出版社
  • 出版: 2020-10-01
  • 作者:李少波,杨静
  • 更新: 2023-03-22
  • 书号:9787568066884
  • 中图:TP274-43
  • 学科:
    工学
    控制科学与工程
    工学
    计算机科学与技术

作者信息

李少波,杨静

贵州大学机械工程学院院长,博士生导师,教授,2005年入选“西部之光”优秀人才,2008年入选贵州省优秀青年科技人才,2009年入选教育部新世纪优秀人才、贵州省省管专家、享受政府特殊津贴专家,2014年评聘为三级教授,入选贵州省首批高层次创新型人才(百层次)。是贵州大学学术学科带头人,机械制造及其自动化、机械电子工程专业博士生导师,中国科学院大学兼职博士生导师。 是“十二五”贵州省制造业信息化专家组组长,中国图学学会理事,贵州省装备行业协会常务理事,贵阳军民结合(装备制造)产业技术创新战略联盟副秘书长,贵州省智能电网产业技术创新战略联盟副理事长,贵州省计算机学会常务副理事长,《计算机集成制造系统—CIMS》理事会理事,《中国制造业信息化》、《机械设计与制造工程》理事会常务理事,贵州省服务决策专家智库专家,贵州省青年科技工作者协会常务理事、信息科学与机电工程专业委员会主任委员,贵阳市网络信息安全协会副会长,《计算机集成系统-CIMS》、《四川大学学报(工程科学版)》、《计算机应用》等期刊的审稿人等。 已发表论文130余篇,SCI/EI/ISTP收录60余篇次,出版专著2部,译著1部,软件著作权登记8项、专利7件(其中发明3件)。被鉴定为国际先进、国内领先的成果8项。主持国家自然科学基金、国家863计划重点项目、国家科技支撑计划等科研项目30余项。获省部级科技进步二等奖2次、三等奖2次,贵阳市科技进步特等奖1次、二等奖2次、三等奖1次。

相关图书