简介
本书基于PyTorch框架介绍深度学习的有关理论和应用,以Python为实现语言。全书共分10章,内容包括深度学习的概念和发展过程、感知器、全连接神经网络、卷积神经网络、若干经典CNN预训练模型及其迁移方法、深度卷积神经网络应用案例、循环神经网络、基于预训练模型的自然语言处理、面向模型解释的深度神经网络可视化方法、多模态学习与多模态数据分类等。 本书兼顾理论与应用、原理与方法,集系统性、实用性、便捷性于一体,易于入门,实例丰富,所有代码全部经过调试和运行。此外,每一章后面都配有适量的习题,供教学和学习参考使用。 本书可作为各类高等学校人工智能和计算机相关专业的“人工智能”或“机器学习”课程的教材,也可作为人工智能、深度学习爱好者和初学者的自学教材,以及从事人工智能课题研究和应用开发人员的参考用书。
编辑推荐
本书基于PyTorch框架介绍深度学习的有关理论和应用,以Python为实现语言,兼顾理论与应用、原理与方法,集系统性、实用性、便捷性和易入门性于一身,实例丰富,所有代码全部经过调试和运行。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2023-07-01
- 更新: 2023-12-15
- 书号:9787302635086
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术