本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本专业、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的新发展和应用,程序员可以从中探索海量数据集的存储和分析,管理员可以从中了解Hadoop集群的安装和运维。
本书结合理论和实践,由浅入深,全方位介绍了Hadoop 这一高性能的海量数据处理和分析平台。全书5部分24 章,第Ⅰ部分介绍Hadoop 基础知识,第Ⅱ部分介绍MapReduce,第Ⅲ部分介绍Hadoop 的运维,第Ⅳ部分介绍Hadoop 相关开源项目,第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce 的数据处理API)。本书是一本专业、全面的Hadoop 参考书和工具书,阐述了Hadoop 生态圈的新发展和应用,程序员可以从中探索海量数据集的存储和分析,管理员可以从中了解Hadoop 集群的安装和运维。
- 版权: 清华大学出版社
- 出版: 2017-07-01
- 更新: 2023-06-07
- 书号:9787302465133
- 中图:TP274-62
- 学科:工学控制科学与工程工学计算机科学与技术