-
收藏
-
加书架
-
引用
简介
本书系统和深入地介绍了现代数字信号分析和处理的基础以及一些广泛应用的算法。 前4 章介绍了研究和学习现代数字信号处理的重要基础, 包括随机信号模型、 估计理论概要、 最优滤波器理论、 最小二乘滤波和卡尔曼滤波, 这些内容是信号处理统计方法的基础性知识; 第5 章~第8 章详细讨论了几类广泛应用的典型算法, 包括自适应滤波算法、 功率谱估计算法、 高阶统计量和循环统计量、 信号的盲源分离; 第9章~第11 章包括时频分析、小波变换原理及应用和信号的稀疏分析与压缩感知。 本书详细地介绍了近年受到广泛关注的一些前沿专题, 例如EM算法、 粒子滤波、 独立分量分析、 盲源分离的子空间方法、 稀疏表示与压缩感知等, 空间阵列信号处理的一些初步内容会穿插在有关章节, 但不单独成章。 本书在写作中既注重了内容的先进性和系统性, 也注重了内容的可读性。 本书适用于电子信息领域研究生课程, 也可供各类利用信号或数据分析作为工具的研究生、 教师和科技人员参考。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2024-05-01
- 更新: 2024-12-20
- 书号:9787302658375
- 中图:TN911.7;TN911.6
- 学科:工学电子科学与技术工学信息与通信工程