《机器学习 : 全彩图解+微课+Python编程》是“鸢尾花数学大系:从加减乘除到机器学习”丛书的最后一册,前六本解决了编程、可视化、数学、 数据方面的诸多问题,而《机器学习 : 全彩图解+微课+Python编程》将开启机器学习经典算法的学习之旅。 《机器学习 : 全彩图解+微课+Python编程》设置了 24 个话题,对应四大类机器学习经典算法(回归、分类、降维、聚类),覆盖算法包括: 回归分析、多元线性回归、非线性回归、正则化回归、贝叶斯回归、高斯过程、k 最近邻分类、朴素贝叶 斯分类、高斯判别分析、支持向量机、核技巧、决策树、主成分分析、截断奇异值分解、主成分分析进阶、 主成分分析与回归、核主成分分析、典型相关分析、 k 均值聚类、高斯混合模型、最大期望算法、层次聚类、 密度聚类、谱聚类。 《机器学习 : 全彩图解+微课+Python编程》选取算法模型的目标是覆盖 Scikit-Learn 库的常用机器学习算法函数,让读者充分理解算法理论, 又能联系实际应用。因此,在学习《机器学习 : 全彩图解+微课+Python编程》时,特别希望调用 Scikit-Learn 各种函数来解决问题之余,更要理解 算法背后的数学工具。因此,《机器学习 : 全彩图解+微课+Python编程》给出适度的数学推导以及扩展阅读。 《机器学习 : 全彩图解+微课+Python编程》提供代码示例和视频讲解,“鸢尾花书”强调在 JupyterLab 自主探究学习才能提高编程技能。本 书配套微课也主要以配套 Jupyter Notebooks 为核心,希望读者边看视频,边动手练习。 《机器学习 : 全彩图解+微课+Python编程》读者群包括所有试图用机器学习解决问题的朋友,尤其适用于机器学习入门、初级程序员转型、 高级数据分析师、机器学习进阶。
- 版权: 清华大学出版社
- 出版: 2024-08-01
- 更新: 2024-11-07
- 书号:9787302666769
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术