-
收藏
-
加书架
-
引用
简介
《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。《动手学PyTorch建模与应用:从深度学习到大模型》共11章,第1章主要介绍深度学习的概念、应用场景及开发环境搭建。第2章详细介绍PyTorch数学基础,包括函数、微分、数理统计、矩阵等基础知识及其案例。第3章介绍数据预处理及常用工具,包括NumPy、Pandas、Matplotlib、数据清洗、特征工程以及深度学习解决问题的一般步骤等。第4章介绍PyTorch基础知识,包括张量的创建、激活函数、损失函数、优化器等。第5章介绍PyTorch深度神经网络,包括神经网络概述、卷积神经网络、循环神经网络等。第6章介绍PyTorch数据建模,包括回归分析、聚类分析、主成分分析、模型评估与调优等。第7~10章介绍PyTorch图像建模、文本建模、音频建模和模型可视化。第11章介绍大语言模型的原理、主要的大语言模型及模型本地化部署、预训练与微调技术。本书还精心设计了50个动手案例和上机练习题,并对所有代码进行了详尽注释和说明,同时提供数据集和配书资源文件,以帮助读者更好地使用本书。 《动手学PyTorch建模与应用:从深度学习到大模型》讲解深入浅出,注重动手实操,特别适合想学习AI技术或想进入该领域的初学者,对深度学习感兴趣的新手、在校学生和从业者阅读,也很适合作为培训机构和高校相关专业的教学用书。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2024-08-01
- 更新: 2024-11-22
- 书号:9787302666592
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术