亮点
课件
模拟试卷
简介
本书介绍了矩阵的基本理论、方法及其应用。上篇为基础篇,包括线性空间与线性算子,内积空间与等积变換,标准形,矩阵分解,矩阵范数等。下篇为应用篇,包括矩阵微积分,广义逆,几类特殊矩阵与特殊积等。第1章 矩阵的几何理论,10万字;第2章 入-矩阵与若尔当标准形,6万字;笫3章 矩阵的分解,6万字;第4章 线性赋范空间,6万字;第5章 矩阵微积分及其应用,6万字;笫6章 广义逆矩阵及其应用,6万字;第7章 几类特殊矩阵与特殊积,5万字;第8章 矩阵在数学内外的应用,5万字;附录 5万字。
编辑推荐
本书从第一版出版以来,深受读者欢迎,重印多次。 既重视矩阵的几何理论,更重视矩阵每个概念的实际应用。我们強调,矩阵论的实质是一门多维高等数学,因为高等数学研究的对象是一维实变量(自变量和因变量)及其相互关系——函数,而矩阵论研究的对象是多维向量组(原像和像)及其相互关系——矩阵。这样对照起来学矩阵论就比较容易理解。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2021-11-01
- 更新: 2024-10-15
- 书号:9787302590453
- 中图:O151.21
- 学科:理学数学