-
收藏
-
加书架
-
引用
简介
《深度学习全书——公式+推导+代码+TensorFlow全程案例》共有15章,分为5部分,第一篇说明深度学习的概念,包括数理基础,特点是结合编程解题,加深读者印象,第二篇说明TensorFlow的学习地图,从张量、自动微分、梯度下降乃至神经层的实践,逐步解构神经网络,第三篇介绍CNN算法、影像应用、转移学习等,第四篇则进入自然语言处理及语音识别的领域,介绍RNN/BERT/Transformer算法、相关应用等,最后,介绍了强化学习的基础知识,包括马尔可夫决策过程、动态规划、蒙特卡洛、Q Learning算法,当然,还有相关案例实践。
编辑推荐
深度学习已经风靡全球,对于计算机相关的从业者来说,学习其相关知识至关重要,对于非计算机领域的从业者来说,学习这些知识也可以大大扩宽自己的视野,对科技世界的发展动向略知一二。《深度学习全书——公式+推导+代码+TensorFlow全程案例》的作者以统计学人的角度,从深度学习必备的数理知识出发,一步步介绍各种领域的算法和应用,帮助学习者们构建一个完整的知识体系,做到即学即用,避免让知识成为空中楼阁。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-09-01
- 更新: 2022-11-16
- 书号:9787302610304
- 中图:TP18
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术