简介
本书根据深度学习技术发展速度快、理论性与实践性强、应用广泛等特点,结合教学、科研及应用需求,坚持“原理、技术、应用”三位一体原则,注重基础性、系统性、前沿性和实用性的统一,对深度学习的最新方法与研究趋势进行全面深入的研究和探索。全书分成四部分:第一部分是人工智能基础,重点阐述人工智能的概念、发展历史和发展趋势等;第二部分是深度学习基础,包括机器学习基础理论、深度学习基础、深度学习网络的优化方法和技巧;第三部分是经典神经网络技术,包括卷积神经网络、循环神经网络、神经网络的区分性训练、序列到序列建模;第四部分是高级深度学习技术,包括自编码器、迁移学习、生成对抗网络、终身学习、深度强化学习、元学习、自监督学习等。 本书在深入浅出的讲解中将最新理论成果与实际问题解决过程相结合,培养学生的创新思维和解决复杂工程问题能力,适用于人工智能、网络安全、通信工程、信息工程等专业高年级本科生、研究生教学,可作为人工智能相关领域的科研人员、工程师的重要参考书。
编辑推荐
(1) 坚持“原理、技术、应用”三位一体原则,注重基础性、系统性、前沿性和实用性的统一。 (2) 知识体系全、技术框架新,涵盖了目前行业应用的最新深度学习技术。 (3) 既注重整体思路设计,又注重核心技术细节分析,使得学生学习时“既见树木又见森林”。 (4) 源自作者20多年从事人工智能基础理论、计算机视觉、自然语言理解和语音识别等领域的科研积累,提供大量典型、实用最新方法讲解和分析。 (5) 在深入浅出的讲解中将最新理论成果与实际问题解决过程相结合,培养学生解决复杂工程问题能力。 (6) 以问题为中心来呈现技术演变进展,培养学生“发现问题、分析问题、解决问题”能力,启发学生创新思维。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-09-01
- 更新: 2023-11-16
- 书号:9787302609438
- 中图:TP181-43
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术