简介
本书面向广大数据科学与人工智能专业的学生及初学者,力求通俗易懂、简洁清晰地呈现学习大数据与人工智能需要的基础数学知识,助力读者为进一步学习人工智能打好数学基础。 全书分为 4 篇,共 19 章:微积分篇(第 1~5 章),主要介绍极限、导数、极值、多元函数导数与极值、梯度下降法等;线性代数篇(第 6~10 章),主要介绍向量、矩阵、行列式、线性方程组、特征值和特征向量等,并介绍这些数学知识在人工智能中的应用;概率统计篇(第 11~17 章),主要介绍概率、随机变量、数字特征、相关分析和回归分析,并介绍数据处理的基本方法和 Pandas 在数据处理中的应用;应用篇(第18 章和第 19 章),主要介绍人工智能中典型的全连接神经网络和卷积神经网络。 本书既有理论又有应用,既可以用纸笔计算,也可以用 Python 编程计算,读者可在学习过程中根据需要合理地选择侧重点。 本书既可作为高职院校数据科学与人工智能专业的教材,也可作为相关产业从业者的自学或参考用书。
编辑推荐
本书专门为数据科学和人工智能相关产业的从业者、高职院校和应用型本科的学生打造,旨在为读者提供学习数据科学和人工智能所需掌握的数学基础知识,帮助读者了解人工智能算法的 基本数学原理,为进一步学习人工智能打好基础。 本书既有理论又有应用,既可以用纸笔计算,也可以用Python编程计算,读者可在学习过程中根据需要合理地选择侧重点。本书引入人工智能实例,促进概念理解。本书引入了向量与编码、矩阵与数字图像处理、梯度下降法、回归分析、神经网络等人工智能中的典型案例,使学生初步了解向量、矩阵、导数等基础数学概念和方法在人工智能中的应用,更深刻地理解数学概念和方法,并提高运用数学知识解决问题的能力。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2023-06-01
- 更新: 2023-11-24
- 书号:9787302632368
- 中图:TP18;O29
- 学科:理学数学工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术