社交媒体中的电子医疗数据挖掘与网络分析

作者: 杨东辉

出版社: 东南大学出版社

出版日期: 2022-12-01

  • 优惠券
  • ¥3
    ¥10
    ¥30
    ¥70
  • 领券
电子书 ¥34.0 定价:68.0
  • 收藏

  • 加书架

  • 引用

简介

电子医疗健康(E-healthcare)领域因其关系民众身心健康且囊括很多相关主题内容,成为最近需求强烈和应用较为广泛的前沿领域。针对社交媒体平台上医疗健康领域的多文本和复杂网络特性,精准医疗用户数据挖掘和社会网络分析等内容是重要的研究课题。本书首先在第一章中介绍了电子医疗健康时代下面临的科学问题和推荐系统研究现状。然后,在第二章中介绍了社交媒体平台上的文本数据和网络数据收集方法;第三章介绍了数据挖掘的知识,包括5个典型分类算法(k-近邻、决策树、支持向量机、随机森林、梯度提升决策树)和3个典型的聚类算法(k-means、层次聚类、孤立森林),通过Weka软件和python语言的使用,讲解如何实现这些数据挖掘方法。接着,在第四章中以微博平台上的电子医疗健康主题为例,阐述了基于文本特征集合构建和特征选择的情感分类,并提出了一种情感相似度计算方法。第五章是社会网络分析在社交媒体平台的应用,展示了如何使用随机指数图模型进行网络连接预测。最后,在第六、七章中对社会化影响力衡量与社会化推荐系统的研究工作。并利用糖尿病微博数据进行社会化推荐的实证分析,验证本方法的有效性、优越性及可推广性。

更多出版物信息
  • 版权: 东南大学出版社
  • 出版: 2022-12-01
  • 作者:杨东辉
  • 更新: 2024-08-12
  • 书号:9787576605358
  • 中图:R319
  • 学科:
    医学
    基础医学

作者信息

杨东辉

山东济宁人,东南大学经济管理学院管理科学与工程系、副教授、博士生导师,入选东南大学至善学者(A层次)。研究方向有商务智能与数据挖掘、社会网络分析、供应链管理等。近年来在电子医疗信息管理与数据挖掘领域发表SSCI数十篇,主持国家自然科学青年基金1项,面向项目1项,参与国家自然科学基金重点项目及面上项目多项。

相关图书