简介
本书全面总结了不确定数据环境下频繁模式挖掘领域的主要研究成果,从数据模型、问题定义、常用算法等方面系统介绍不确定频繁项集挖掘、不确定序列模式挖掘、不确定频繁子图模式挖掘、不确定高效用项集挖掘和不确定加权频繁项集挖掘技术。重点针对两类典型的不确定数据,即概率数据和容错数据,进行概率频繁模式挖掘和近似频繁模式挖掘的研究,并应用于传统中医药数据环境下,从主观不确定性和客观不确定性两个方面提出相应的解决方案,实现基于不确定数据的高效频繁模式挖掘,并通过实验验证了它们的有效性和实用性。 本书主要面向对数据挖掘和机器学习感兴趣的科研人员和学生,特别适合从事不确定数据挖掘、频繁模式挖掘和关联规则发现以及相关研究领域的广大科技工作者和研究人员使用,也可以作为数据挖掘和机器学习相关课程的教学参考书。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2018-06-01
- 更新: 2023-07-18
- 书号:9787302499855
- 中图:TP274
- 学科:工学控制科学与工程工学计算机科学与技术