跟我一起学机器学习

作者: 王成、黄晓辉

出版社: 清华大学出版社

出版日期: 2022-07-01

电子书 ¥41.68 定价:69.0
  • 收藏

  • 加书架

  • 引用

简介

本书系统地阐述机器学习中常见的几类模型,包括模型的思想、原理及实现细节等。同时,本书还结合了当前热门的机器学习框架Sklearn,对书中所涉及的模型进行用法上详细讲解。 全书共10章,第1章介绍机器学习开发环境的配置;第2章讲解线性回归模型的基本原理、回归模型中常见的几种评价指标,以及用于有监督模型训练的梯度下降算法;第3章介绍逻辑回归模型的基本原理和分类模型中常见的几种评价指标;第4章介绍模型的改善与泛化,包括特征标准化、如何避免过拟合及如何进行模型选择等;第5章讲解K最近邻分类算法的基本原理及kd树的构造与搜索;第6章介绍朴素贝叶斯算法的基本原理;第7章介绍几种常见的文本特征提取方法,包括词袋模型和TF-IDF等;第8章讲解决策树的基本原理,包括几种经典的决策树生成算法和集成模型;第9章介绍支持向量机的基本原理与求解过程;第10章介绍几种经典的聚类算法及相应的评价指标计算方法。 本书包含大量的代码示例及实际案例介绍,不仅可以作为计算机相关专业学生入门机器学习的读物,同时也适用于非计算机专业及培训机构的参考学习书籍。

编辑推荐

笔者根据多年的学习和工作经验,总结出一条有效的学习路线:先抓主干,后抓枝节。学习一个算法就好比遍历一棵大树上的所有枝节,算法越是复杂其对应的枝叶也就越多。一个算法的学习,笔者将它归结成了5个层次:理解主要思想、掌握算法原理、熟练开源模型、完成数学推导和进行源码实现,帮助读者分阶段地学习,轻松迈入机器学习的大门。

更多出版物信息
  • 版权: 清华大学出版社
  • 出版: 2022-07-01
  • 作者:王成、黄晓辉
  • 更新: 2023-06-07
  • 书号:9787302592846
  • 中图:TP181
  • 学科:
    工学
    控制科学与工程
    工学
    计算机科学与技术
    交叉学科
    智能科学与技术