-
收藏
-
加书架
-
引用
简介
当前,人工智能正在改变世界,人工智能已经上升至国家战略高度,面对人工智能在教育界掀起的层层浪花,本书针对人工智能知识谱系庞杂的问题,聚集人工智能教育在阶段性教育中出现的断层现象,基于信息技术学科教育教学研究实践,以机器学习K近邻、决策树、随机森林、支持向量机、神经网络等18个经典的算法原理解析和具体应用为切入点,以Python编程IDE为操作工具,通过理论阐释、案例分析、编程实践,带领读者拨开迷雾,明晰路径,体验机器学习算法的奇妙,领略人工智能科学的精妙,获取人工智能“学什么、怎么学、怎么用”的方法。 本书内容包括概述、分类、回归、聚类、关联分析、数据预处理和人工神经网络等内容。算法原理解析中所涉及的教学等晦涩内容都以知识窗的形式一一讲解,表述通俗易懂;算法具体应用中的案例典型生动,编程代码具体详细,力求让人工智能思想落地,直观地展现于读者面前。 本书主要面向基础教育阶段信息技术学科教师、高中学生以及计算机相关专业的大中专学生和对人工智能领域感兴趣的大众读者,也可作为人工智能课程的学习材料。
编辑推荐
本书从机器学习经典算法原理解析和应用阐释人工智能,表述通俗易懂,案例极具代表性和针对性,分18章来详细介绍机器学习中诸如:K近邻、决策树,随机森林、支持向量机,神经网络等18个最经典的算法。每个算法都通过“原理解析”+“问题实例”+“实例源码”的形式来讲解与展现。算法中所涉及到的数学公式、符号都以知识窗的形式一一讲解,节省了读者临时去查阅相关数学书籍的时间。在本书中,设计了大量的问题实例,并采用当前最流行,最容易上手的python语言来编写每个实例代码,以期让每位读者能尽快领略到机器学习的精妙之处,体会算法之美。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-08-01
- 更新: 2023-02-07
- 书号:9787302606963
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术