亮点
代码示例
简介
可解释AI(Interpretable AI)将教会你识别模型所学习的模式及其产生结果的原因。通过阅读《可解释AI实战(PyTorch版)》,你将掌握一些用于解释白盒模型(如线性回归和广义可加模型)的方法,以及一些用于解释复杂深度学习模型的方法。可解释AI是一个快速发展的领域,本书将该领域的前沿研究简化为你可以在Python中实现的实际方法。 主要内容 ● 解释AI模型的技术 ● 最大限度地减少错误、偏见、数据泄露和概念漂移 ● 度量公平性和减少偏见 ● 构建符合GDPR的AI系统
编辑推荐
对于深度学习模型,常常很难解释其工作方式,即使是创建这些模型的数据科学家也不例外。提高机器学习模型的透明度和可解释性可以最大限度地减少错误,减少意想不到的偏见,增加用户对结果的信任。《可解释AI实战(PyTorch版)》讲述了探索“黑盒”模型内部的技术,提供了设计可靠算法的方法,并揭示了导致结果偏差的各种关键因素。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2024-03-01
- 更新: 2024-10-24
- 书号:9787302654865
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术