本书包括运筹优化、图论模型、微分方程、随机模拟和统计方法等传统建模方法,同时还增设了智能优化算法、机器学习方法和深度方法,可以满足广大读者和参赛者的学习需求。本书算法实现以Python语言为主,每章内容均有详细的代码,可以帮助读者高效掌握Python编程实现算法。本书共包含19章,前两章为基础部分,分别为数学建模简介和Python简介; 第3~11章为传统建模方法部分,其中,第3章和第4章分别介绍运筹优化中的线性规划和非线性规划,第5章介绍图论,第6章介绍微分方程,第7章介绍插值与拟合,第8章介绍随机模拟,第9~11章介绍统计方法,包括回归分析、聚类分析和主成分分析; 第12~19章为智能优化和机器学习部分,其中,第12~14章为智能优化,分别介绍模拟退火算法、遗传算法和粒子群优化算法,第15~19章为机器学习方法,分别介绍支持向量机、决策树、随机森林、神经网络和深度学习。 本书可作为高等学校数学建模、数学实验课程教材,也可作为数学建模竞赛的培训教材。
本书包括运筹优化、图论模型、微分方程、随机模拟和统计方法等传统建模方法,同时还增设了智能优化算法、机器学习方法和深度方法,可以满足广大读者和参赛者的学习需求。本书算法实现以Python语言为主,每章内容均有详细的代码,可以帮助读者高效掌握Python编程实现算法。本书共包含19章,前两章为基础部分,分别为数学建模简介和Python简介; 第3~11章为传统建模方法部分,其中,第3章和第4章分别介绍运筹优化中的线性规划和非线性规划,第5章介绍图论,第6章介绍微分方程,第7章介绍 插值与拟合,第8章介绍随机模拟,第9~11章介绍统计方法,包括回归分析、聚类分析和主成分分析; 第12~19章为智能优化和机器学习部分,其中,第12~14章为智能优化,分别介绍模拟退火算法、遗传算法和粒子群优化算法,第15~19章为机器学习方法,分别介绍支持向量机、决策树、随机森林、神经网络和深度学习。 本书可作为高等学校数学建模、数学实验课程教材,也可作为数学建模竞赛的培训教材。
- 版权: 清华大学出版社
- 出版: 2024-06-01
- 更新: 2024-12-19
- 书号:9787302652373
- 中图:O141.4-39
- 学科:理学数学