本书主要利用AI发现和构建有效的量化策略,旨在使读者掌握AI在量化策略中的应用。随着2023年大模型的崛起,投资者需要学会与AI共生,建立个人知识库和灵活应用提示词工程(Prompt Engineering),让AI协助寻找论文、理解论文、编写代码、构建模型、训练模型、生成信号、特征识别、投资组合优化和参数优化等。AI在高质量人群的量化行业中将得到广泛应用和发展,让更多读者能掌握编程和量化技能,从而在AI的帮助下快速开发出适应市场的量化策略。 本书共10章,涵盖量化投资中AI的历史演进、投研平台的构建、量化策略的开发流程、策略分类和介绍、市场主流策略开发、策略回测和实盘准备等内容。书中提供丰富的示例代码,具有较强的实践性和系统性,并配有高等数学、金融工程和计算机科学技术等前置知识,以帮助读者深入理解量化投资策略。 本书适合量化进阶者,也对有经验的策略研究员有参考价值,同时可作为高校和培训机构相关专业的教学参考书。
系统介绍了如何将人工智能技术应用于量化投资策略的各个环节,包括投资研究、数据挖掘、策略构建、回测、实盘交易等,展现了AI在量化领域的广阔应用前景。 不仅阐述了AI在量化策略驱动上的理论基础,更提供了丰富的实战案例分析和代码示例,确保读者能够学以致用,真正将AI技术应用于实践中。 全面讲解了常见的量化策略类型,如做市、套利、CTA、多因子选股等,分析了这些策略的原理、变化及建模方法。 介绍了基于深度学习、强化学习等AI技术构建做市、套利等策略的创新方法,为传统量化投资开拓了新思路。 整体结构由浅入深,先从量化投资的基本概念出发,再到学术研究,最后落实到实战操作,循序渐进,确保读者能够全面系统地掌握相关知识。 由资深量化投资从业者和AI专家合作撰写,理论与实践并重,观点前沿权威,对于想深入了解AI时代量化投资的读者很有价值。
- 版权: 清华大学出版社
- 出版: 2024-09-01
- 更新: 2025-02-14
- 书号:9787302671947
- 中图:TP18
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术