简介
本书旨在为包括研究生和工业从业者在内的研究人员提供有关为数据驱动的进化优化而开发的最新方法的全面描述。本书共分12章,第1~4章简要介绍了优化、进化计算和机器学习中精心挑选的重要主题和方法。第5章提供了数据驱动优化的基础知识,包括启发式算法和基于获取函数的代理模型管理。第6章介绍使用多个代理模型进行单目标优化的方法。第7~8章中描述用于求解多目标和多目标优化算法的代表性进化算法以及代理模型辅助数据驱动的进化多目标和多目标优化。第9章详细阐述了高维数据驱动优化的方法。第10章描述迁移学习和迁移优化。第11章讨论离线数据驱动的进化优化,以翼型设计优化等实际优化问题为例、原油蒸馏优化和急救系统优化。最后,第12章强调了深度神经架构搜索作为数据驱动的昂贵优化问题。
编辑推荐
(1)聚焦数据驱动的优化,探索演化算法用于求解数据驱动优化问题的代表性研究成果。 (2)系统介绍演化算法与演化优化、机器学习及数据科学在复杂优化应用中的相互融合及它们在解決实际工程与科学问题中的重要作用,破解复杂科学及工程问题进化优化难题。 (3)结合进化计算与机器学习技术,全书提供一系列数据驱动的优化方法以解决复杂优化问题中存在的各类挑战。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2024-06-01
- 更新: 2024-12-25
- 书号:9787302663669
- 中图:TP274
- 学科:工学控制科学与工程工学计算机科学与技术
相关图书
-
像数据达人一样思考和沟通:数据科学、统计学与机器学习极简入门
(美)亚历克斯·J.古特曼(Alex J.Gutman),(美)乔丹·哥德梅尔(Jordan Goldmeier)著,李文菲,筴硕 译
¥68.00