简介
本书以Python 3.7版本作为数据分析与挖掘实战的应用工具,从Python的基础语法开始,陆续介绍有关数值计算的numpy、数据处理的pandas、数据可视化的matplotlib和数据挖掘的sklearn等内容。全书共涵盖15种可视化图形以及10个常用的数据挖掘算法和实战项目,通过本书的学习,读者可以掌握数据分析与挖掘的理论知识和实战技能。 本书适于统计学、数学、经济学、金融学、管理学以及相关理工科专业的本科生、研究生使用,也能够提高从事数据咨询、研究或分析等人士的专业水平和技能。
编辑推荐
为满足用人单位对数据分析和挖掘人员在编程方面的技能要求,本书遵循由浅入深的原则,详细地介绍了利用Python及其相关工具实现数据分析和挖掘的实用技能。 结合Python中成熟的Numpy、Pandas、MatPlotLib、Sklearn、Seaborn、Statsmodels和SciPy模块,实现数据分析与挖掘中关于数据的清洗、整理、探索、可视化、建模和评估等流程的操作,让每一位对数据分析和挖掘的从业者或感兴趣的读者都能从中学到所需的内容。 详解十大常用数据挖掘算法及案例实战,如多元线性回归的预测模型、决策树分类模型、SVM分类模型、GBDT分类模型、K均值聚类模型等,基本覆盖用人单位对常用挖掘算法的需求。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2020-04-29
- 更新: 2023-06-21
- 书号:9787302553052
- 中图:TP311.561
- 学科:工学控制科学与工程工学计算机科学与技术工学软件工程