简介
本书主要阐述数据统计发布中的差分隐私保护模型及其关键算法。全书共8章,主要内容包括差分隐私基础知识、面向任意区间树结构及其扩展背景(考虑区间计数查询分布和异方差加噪)下的差分隐私直方图发布、面向流/连续数据发布的差分隐私保护、差分隐私数据发布方法的误差分析等。 本书主要面向高等学校计算机科学与技术、网络空间安全、管理科学与工程等学科相关专业高年级本科生、研究生以及数据安全隐私保护的研究者。
编辑推荐
随着数据挖掘和信息共享等应用的出现与发展,如何保护隐私数据和防止敏感信息泄露成为当前面临的重大挑战。数据收集与共享发布中的隐私保护问题是近年来的研究热点,已吸引国际上众多研究人员对其进行深入研究,并提出一系列隐私保护模型及有关算法,其中,差分隐私是目前业界广泛认可的严格的隐私保护模型。然而,目前还未有针对差分隐私领域研究成果的系统总结或学术专著。为此,作者对自身及所在研究团队8年来从事该领域研究的成果进行总结梳理,形成学术专著。 主要特色 (1) 作者及其课题组一直致力于隐私保护数据发布的模型及算法
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-07-01
- 更新: 2022-11-16
- 书号:9787302524168
- 中图:TP274
- 学科:工学控制科学与工程工学计算机科学与技术