概率深度学习 使用Python、Keras和TensorFlow Probability

作者: [德] 奥利弗·杜尔(Oliver Dürr)、贝亚特·西克(Beate Sick)、埃尔维斯·穆里纳(Elvis Murina)著 崔亚奇 唐田田 但波 译

出版社: 清华大学出版社

出版日期: 2022-03-01

电子书 暂不销售 定价:98.0
  • 收藏

  • 加书架

  • 引用

简介

主要内容 ●探索深度学习的最大似然原理和统计学基础 ●发现能输出各种可能结果的概率模型 ●学习使用标准化流来建模和生成复杂分布 ●使用贝叶斯神经网络获取模型中的不确定性

编辑推荐

世界充满了噪声和不确定性。概率深度学习模型可对这些噪声和不确定性进行建模,并将所建的模型应用于现实世界,帮助深度学习工程师评估其结果的准确性、发现错误,并加深他们对算法工作原理的理解。这对自动驾驶汽车和科学测试来说至关重要。 《概率深度学习使用Python、 Keras和TensorFlow Probability》 是关于神经网络原理的实践指南,引导读者学习使用不同数据类型的正确分布来提升网络性能,同时推导贝叶斯变体,以通过表达模型自身的不确定性来提高准确性。本书采用了主流的实现框架,提供了易于应用的代码,让读者更加注重实际应用。

更多出版物信息
  • 版权: 清华大学出版社
  • 出版: 2022-03-01
  • 作者:[德] 奥利弗·杜尔(Oliver Dürr)、贝亚特·西克(Beate Sick)、埃尔维斯·穆里纳(Elvis Murina)著 崔亚奇 唐田田 但波 译
  • 更新: 2023-11-16
  • 书号:9787302598657
  • 中图:TP181
  • 学科:
    工学
    控制科学与工程
    工学
    计算机科学与技术
    交叉学科
    智能科学与技术

相关图书