本书对人工智能安全的理论与实践技术进行了梳理,全面完整地覆盖了人工智能安全技术的主要方面,把相关知识体系划分为五部分,即人工智能的安全观、人工智能安全的数据处理、人工智能用于网络安全的攻击与防御、人工智能模型的对抗攻击与防御以及人工智能平台的安全与工具。第一部分对人工智能安全问题、基本属性、技术体系等进行了归纳梳理。第二部分介绍人工智能安全数据处理的三个主要方法,即非平衡数据分类、噪声数据处理和小样本学习方法。第三部分从人工智能技术赋能网络空间安全的攻击与防御问题角度出发,从三个典型实例及攻击图的角度介绍典型人工智能方法在攻击与防御中的应用。第四部分围绕机器学习模型的安全问题,对攻击者、对抗攻击的理论与方法、典型的对抗攻击方法、隐私安全、聚类模型的攻击以及对抗攻击的防御方法进行了梳理。第五部分介绍人工智能平台的安全与工具,以及基于阿里云天池AI学习平台的若干案例与实验。 本书可以作为高等院校网络空间安全、人工智能、大数据、计算机以及电子信息等相关专业研究生和高年级本科生的教材,也可以作为网络空间安全、人工智能安全、大数据、计算机等领域研究人员、专业技术人员和管理人员的参考书。
在教育部-阿里云产学合作协同育人项目的支持下,本书结合大数据驱动的人工智能发展背景,对人工智能安全理论与实践技术进行了全面梳理。本书作为一本产学兼顾的教材,具有如下特色:1. 围绕大数据驱动的人工智能发展背景,充分考虑数据在人工智能中的重要性,提炼出人工智能数据安全的相关技术。把网络空间安全智能防御的数据处理、人工智能模型训练阶段数据安全、推理阶段数据安全以及数据角度的防御技术,作为知识体系的主干。2. 从网络空间安全攻击与防御的视角来组织人工智能模型算法的安全技术知识体系。人工智能模型算法安全仍然符合网络空间安全的基本特征和规律,这种知识体系的安排充分体现了两个学科方向的内在联系,有利于读者更深入地理解人工智能安全。3. 既注重人工智能安全的相关理论,也强调实践技术的掌握。人工智能安全涉及到大量模型和算法,并需要一定的线性代数、数学分析等基础理论。除此之外,不论是人工智能本身的安全或是人工智能用于解决安全问题,都具有很强的实践要求。
- 版权: 清华大学出版社
- 出版: 2022-08-01
- 更新: 2022-12-08
- 书号:9787302611509
- 中图:TP18
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术