数据科学项目日益增多,每个项目在提出原型到生产的过程中都需要可靠的基础设施。使用《Effective数据科学基础设施》介绍的一些新技术和新工具,你将能建立一个适用于各类组织(无论是初创企业还是大型企业)的基础设施堆栈。 《Effective数据科学基础设施》可帮助你建立数据流程和项目工作流,为你开发项目带来强大动力。《Effective数据科学基础设施》呈现Netflix数据操作的最先进工具和概念,并在此基础上介绍一种可定制的基于云的模型开发和MLOps方法,可轻松适应公司的特定需求。当团队把数据科学和机器学习应用于广泛的业务问题时,这些实用的数据流程将更高效地生成更完美的结果。 主要内容 ● 在云中处理计算和编排 ● 将基于云的工具耦合到一个内聚的数据科学环境中 ● 使用Metaflow、AWS和Python数据生态系统开发可复制的数据科学项目 ● 构建需要大型数据集和模型,需要数据科学家团队参与的复杂应用程序
《Effective数据科学基础设施》由Netflix工程师Ville Tuulos撰写,以Metaflow为对象,介绍了数据科学所需要的基础设施,囊括数据准备、特征工程、模型训练、模型部署、服务和持续监控等环节。Metaflow专注于构建生产流程,更适合具有深厚工程和DevOps技能的大型专业数据科学团队。本书的目标读者为数据科学家、机器学习工程师、IT 技术人员和MLOps工程师。数据科学家在人工智能和算法方面非常精通,但软件开发能力通常不足。他们渴望有一套方法论和工具来促进从构建到部署的迭代过程,从而落实自己的想法。数据科学家不在意在一个“孤岛”。上开展数据挖掘和分析工作,他们更希望能够在离线、实时和批处理等场景中落实项目。IT技术人员对机器学习算法理论和模型细节并不了解,他们渴望本书能够提供一个机器学习流程的全貌,便于他们进行任务编排。此外,一些企业的中高层管理人员可通过本书获取MLOps管理理念,为制定AI项目管理和KPI考核提供参考依据。总之,与传统的软件工程师技能要求相比,MLOps工程师除了需要具备现代软件工程所要求的强大能力,还需要具备ML专业知识,具体包括ML模型训练、模型部署、模型监控和帮助企业落实架构、系统设计和故障排除等能力。
- 版权: 清华大学出版社
- 出版: 2023-08-01
- 更新: 2024-03-06
- 书号:9787302641865
- 中图:TP274
- 学科:工学控制科学与工程工学计算机科学与技术