-
收藏
-
加书架
-
引用
简介
本书主要介绍神经网络、深度学习和自然语言处理的基本原理、方法和应用,全书分为3部分,每部分涵盖了不同的主题: 第1部分(第1~3章)介绍神经网络和深度学习的基础知识,包括人工神经网络的起源和发展,神经网络的表示方法、数学基础理论和机器学习基础,以及表征学习的概念;第2部分(第4章和第5章)介绍自然语言处理和转换器网络;第3部分(第6~10章)介绍自然语言处理的案例分析,包括文本分类任务、实体识别、文本生成和文本摘要的方法和技术、基于评审的问答系统等。 本书是学习并实践神经网络、深度学习和自然语言处理的实用指南,每章都给出了代码示例和实际案例,帮助读者理解和实践所学的知识。本书采用渐进式讲解,理论与实践结合,强调自然语言处理,并且关注最新技术和趋势,适合作为高等学校神经网络、深度学习和自然语言处理相关课程的教材,也是相关专业人员很好的参考用书。
编辑推荐
本书是学习并实践神经网络、深度学习和自然语言处理的综合指南,每章都给出了代码示例和实际案例,帮助读者理解和实践所学的知识。本书渐进式讲解,理论与实践结合,强 调自然语言处理,并且关注最新技术和趋势,不仅适合作为神经网络、深度学习和自然语言处理相关课程的教材,也是相关专业人员的很好参考用书。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2024-03-01
- 更新: 2024-10-24
- 书号:9787302657477
- 中图:TP391
- 学科:工学控制科学与工程工学计算机科学与技术