-
收藏
-
加书架
-
引用
简介
本书分为基础篇和高级篇。基础篇介绍机器学习的主要原理和方法、以及最近几年来的最新进展,包括机器学习的发展史、决策树学习、PAC模型、贝叶斯学习、支持向量机、AdaBoost、压缩感知、子空间、深度学习与神经网络、MCNs、强化学习等内容。在高级篇部分,主要介绍一下作者多年来在机器学习与视觉感知方面的研究成果,包括HGPP、LDP、KBP、高阶差分码、Kernel Learning、Bag of Feature model等方法原理阐述与应用。
编辑推荐
本书从易于学生学习的角度逐步讲解了诸如决策树学习、贝叶斯学习、支持向量机、压缩感知、调制压缩神经网络以及深度学习等知识,书中加入了大量的例子来实现算法,使得读者可以在学习示例的基础上去学习算法和理论。本书把最新的机器学习领域的成果进行了介绍,对作者多年来的研究成果也进行了总结。由于作者在人脸识别、铁路图像检测方面进行了多年的研究,该书对于该领域的研究人员具有一定的启发作用。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2020-09-01
- 更新: 2023-06-07
- 书号:9787302561859
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术
相关图书
-
机器视觉算法与应用(第2版)
[德]卡斯特恩·斯蒂格(Carsten Steger), 马克乌斯·乌尔里克(Markus Ulrich),克里斯琴·威德曼(Christian Wiedemann)著 杨少荣、段德山、张勇、彭潇、偏召华 译
¥128.00