简介
《机器学习理论与实践》用通俗易懂的语言介绍了浅层机器学习、深度学习的主要模型原理及实现程序,以及编写机器学习程序所需要的编程语言背景与数据处理方法等。主要内容包括浅层监督学习模型,如线性模型、决策树模型、贝叶斯模型、支持向量机模型、k-近邻模型、人工神经网络模型、集成学习模型;浅层无监督学习模型,如k均值聚类方法、DBSCAN聚类方法;深度学习模型,如自动编码器、卷积神经网络;编程语言基础,包括Python基本语法,numpy库、pandas库、matplotlib库、os模块等;数据预处理方法,如图像处理方法(线性增强、空间域滤波、频率域滤波)、数据规范化方法(min-max数据规范化方法、z-score数据规范化方法)、类别编码方法(one-hot编码)、数据降维方法(主成分分析);机器视觉领域常见的特征提取方法等。 《机器学习理论与实践》可作为高等院校相关专业学生的教材,还可作为对机器学习感兴趣读者的参考书。
编辑推荐
《机器学习理论与实践》弱化了公式推导与复杂的算法、原理,更着重介绍算法的应用,为每一个模型均配备了编程实例,以便读者能掌握运用理论解决实际问题的方法。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-03-01
- 更新: 2023-12-05
- 书号:9787512146464
- 中图:TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术