-
收藏
-
加书架
-
引用
简介
本书主要介绍经典的机器学习算法的原理和改进,以及Python的实例实现。本书的内容可以分成三部分: 第一部分是机器学习概念篇(第1章),充分介绍机器学习的相关概念,并且对机器学习的各种算法进行分类,以便读者对机器学习的知识框架有整体的了解,从而在后续的学习中更容易接受机器学习涉及的各类算法; 第二部分是Python机器学习基础篇(第2章和第3章),简单介绍Python的基本使用方法、机器学习库scikitlearn和人工智能工具集OpenAI Gym; 第三部分是机器学习算法与Python实践篇(第4~19章),对监督学习、无/非监督学习、强化学习三大类常用算法逐一讲解,包括机器学习算法的原理、算法的优缺点、算法的实例解释以及Python的实践应用。 本书适合对人工智能、机器学习感兴趣的读者,希望用机器学习完成设计的计算机或电子信息专业的学生,准备开设机器学习、深度学习实践课的授课老师,学习过C语言,且希望进一步提高编程水平的开发者,刚从事机器学习、语音、机器视觉、智能机器人研发的算法工程师阅读。
编辑推荐
本书配套资源丰富,包括教学大纲、教学课件、电子教案、程序源码、习题答案,作者还为本书精心录制了600分钟的微课视频。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2023-04-01
- 更新: 2023-11-24
- 书号:9787302600480
- 中图:TP181;TP311.561
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术