简介
本书涵盖深度学习的专业基础理论知识,包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络、循环神经网络、正则化与深度学习优化,以及比较流行的应用场景实践。本书配套70个示例源码及PPT课件。 本书共11章外加3个附录,系统讲解深度学习的基础知识与领域应用实践。本书内容包括深度学习概述、机器学习基础、神经网络基础、卷积神经网络和循环神经网络、正则化与深度学习优化、计算机视觉应用、目标检测应用、文本分析应用、深度强化学习应用、TensorFlow模型应用、Transformer模型应用等。附录中还给出机器学习和深度学习中用到的数学基础知识,包括线性代数、概率论和信息论等。 本书适合Python深度学习初学者、深度学习算法开发人员学习,也适合作为高等院校计算机技术、人工智能、大数据相关专业的教材或教学参考书。
编辑推荐
本书详解深度学习与机器学习基础、神经网络基础、卷积神经网络和循环神经网络、正则化与深度学习优化等内容,并剖析深度学习在计算机视觉、目标检测、文本分析、强化深度学习、TensorFlow模型、Transformer模型等方向的应用。 本书附录还给出机器学习和深度学习中用到的数学基础知识,包括线性代数、概率论和信息论等。 本书配套70个示例源码、PPT课件,所有示例源码都经过测试无误。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2023-05-01
- 更新: 2023-11-24
- 书号:9787302628774
- 中图:TP312PY;TP181
- 学科:工学控制科学与工程工学计算机科学与技术工学软件工程
相关图书
-
机器学习和深度学习:原理、算法、实战(使用Python 和 TensorFlow)
[印] 文卡塔·雷迪·科纳萨尼(Venkata Reddy Konasani)、沙伦德拉·卡德雷(Shailendra Kadre)著 秦婧 韩雨童 译
¥128.00