机器学习中的统计思维(Python实现)

作者: 董平

出版社: 清华大学出版社

出版日期: 2023-09-01

  • 优惠券
  • ¥3
    ¥10
    ¥30
    ¥70
  • 领券
电子书 (共2册) 暂不销售 定价:99.0

本书由多册组成,不支持单独购买

  • 收藏

  • 加书架

  • 引用

分册书目(共2册)
  • 第1册 机器学习中的统计思维(Python实现)
    试读
  • 第2册 机器学习中的统计思维(Python实现):小册子
    试读
简介

机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造 k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。具体模型包括线性回归模型、K近邻模型、贝叶斯推断、逻辑回归模型、最大熵模型、决策树模型、感知机模型、支持向量机、EM算法和提升方法。 本书共 12章,绪论介绍贯穿本书的两大思维模式,以及关于全书的阅读指南;第 1章介绍一些基本术语,并给出监督学习的流程;第 2章介绍关于回归问题的机器学习方法;第 3~9章介绍关于分类问题的机器学习方法;第 10章介绍可应用于具有隐变量模型的参数学习算法——EM算法;第 11章简单介绍集成学习,并重点阐述其中的提升(Boosting) 方法。为满足个性化学习需求的不同需求,本书从核心思想、方法流程及实际案例应用等不同角度,详细描述各种方法的原理和实用价值,非常适合数据科学、机器学习专业的本科生和研究生学习,也可供相关从业者参考。

编辑推荐

本书从统计学的角度来理解机器学习模型的本质。

更多出版物信息
  • 版权: 清华大学出版社
  • 出版: 2023-09-01
  • 作者:董平
  • 更新: 2024-02-18
  • 书号:9787302634010
  • 中图:TP181;TP311.561
  • 学科:
    工学
    控制科学与工程
    工学
    计算机科学与技术
    工学
    软件工程
    交叉学科
    智能科学与技术

作者信息

董平

董平(博士),上海对外经贸大学统计与信息学院讲师。曾获概率论与数理统计理学博士学位(山东大学2018)、 理学学士学位和经济学学士学位(山东大学2012);美国迈阿密大学访问学者。主要研究领域为高维数据、假设检验、半监督回归、统计机器学习等。参与多项科研项目和工程类项目,主持多项校级课程建设项目,曾获第三届上海市高校教师教学创新大赛二等奖。

相关专题

相关图书