量子机器学习——基于Python的理论和实现

作者: 姜楠、王健、张蕊

出版社: 清华大学出版社

出版日期: 2024-06-01

  • 优惠券
  • ¥3
    ¥10
    ¥30
    ¥70
  • 领券
电子书 ¥44.85 定价:69.0
  • 收藏

  • 加书架

  • 引用

简介

量子计算机具有天然的并行性,相比经典计算机能显著提高算法效率,是下一代智能计算的一个重要发展方向。随着量子计算机硬件的发展,通过本地或者云平台进行量子计算越来越容易,量子计算相关研究逐渐从理论走向实用。量子机器学习是机器学习和量子计算的交叉领域,它研究的是如何利用量子叠加、并行等特性降低经典机器学习算法的复杂度,以解决数据量大、数据维度高造成的训练困难等问题。 本书首先介绍量子计算的基础知识,然后将理论和实践相结合,介绍量子降维、量子分类、量子回归、量子聚类、量子神经网络及量子强化学习的算法理论,并提供部分算法的示例和代码,以帮助读者进一步理解量子机器学习算法。 本书可作为量子机器学习的入门书籍,供爱好者了解和学习量子机器学习算法;也可作为“量子机器学习”课程的教科书或参考书,供教师和学生阅读参考;还可作为对量子机器学习感兴趣的科研人员的参考书。

编辑推荐

(1) 聚焦量子机器学习这一前沿研究领域,基于量子特性,给出实现机器学习的全新方法。紧扣“量子”机器学习,而非经典机器学习,干货满满。 (2) 内容完整,涵盖量子降维、量子分类、量子回归、量子聚类、量子神经网络、量子强化学习六大方面,使读者对量子机器学习形成整体认知。 (3) 理论和实践相结合,基于Python编程实现量子机器学习算法,给出22个实现案例,均包含完整代码。 (4) 新形态教材,配套资源丰富,包括教学大纲、PPT课件、案例程序代码等,可扫描目录上方二维码下载。 (5) 可作为高等院校教材以及科研人员参考资料,读者既能从算法理论中受到启发,又能通过案例掌握实验方法。

更多出版物信息
  • 版权: 清华大学出版社
  • 出版: 2024-06-01
  • 作者:姜楠、王健、张蕊
  • 更新: 2025-03-04
  • 书号:9787302662563
  • 中图:TP385
  • 学科:
    工学
    控制科学与工程
    工学
    计算机科学与技术

作者信息

姜楠、王健、张蕊

姜楠,北京工业大学信息学部教授,博士生导师。主要研究方向包括量子机器学习、量子图像处理、内容安全和计算智能,讲授“信息论与编码理论”“量子机器学习”等课程。近5年发表SCI源刊论文近20篇。主持国家自然科学基金项目1项。CCF量子计算专委会执行委员,北京市委组织部优秀人才。出版量子计算和信息论方面的专著1部,教材2部。 王健,北京交通大学计算机与信息技术学院副教授,博士生导师,信息安全系副主任。主要研究领域为量子机器学习、网络安全、大数据安全与分析、密码应用,讲授“量子计算”“计算机网络”等课程。近5年发表SCI源刊论文近20篇。主持国家科技重大专项子课题等课题十余项。出版量子计算和信息论方面的专著1部,教材2部。 张蕊,北京交通大学计算机与信息技术学院博士生。主要研究方向包括量子机器学习和量子信号处理。发表SCI源刊论文6篇。

相关图书