简介
针对每个想要了解深度学习概念的数据科学爱好者,本书通过通俗易懂地解释R代码,让读者可以很容易起步。在深度学习算法和应用的理论和实践方面做到了平衡,在讲述基础理论的同时,通过45个基于R语言的编程实例让读者循序渐进地掌握深度学习技术。 读者将通过实战案例实现卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、序列到序列模型、生成对抗网络(GAN)和强化学习,还将学习使用GPU进行大型数据集的高性能计算,以及R语言中的并行计算编程。 各个部分内容安排合理,按照“准备工作→操作步骤→原理解析→内容拓展→参考阅读”的流程组织内容,清楚地讲解实战案例的实现过程。
编辑推荐
(1) 在深度学习算法和应用的理论和实践方面做到了平衡,在讲述基础理论的同时,通过45个基于R语言的编程实例让读者循序渐进地掌握深度学习技术。 (2) 各个部分内容安排合理,按照“准备工作→操作步骤→原理解析→内容拓展→参考阅读”的流程组织内容,清楚地讲解实战案例的实现过程。 (3)提供程序代码和彩色图片。
更多出版物信息
- 版权: 清华大学出版社
- 出版: 2022-09-01
- 更新: 2023-11-16
- 书号:9787302606987
- 中图:TP312.8R;TP181
- 学科:工学控制科学与工程工学计算机科学与技术交叉学科智能科学与技术